
 1

EECS 2011: Assignment 3
July 24, 2017

9 % of the course grade

Due: Monday, July 31, 2017, 23:59 EDT

Motivation

The purpose of this assignment is to evaluate two implementations of Maps in Java in

terms of their performance when used with two kinds of keys.

Introduction
A Map is an object that maps keys to values. A map cannot contain duplicate keys: Each

key can map to at most one value. It models the mathematical function abstraction

(functions also map a value to a value). The Map interface includes methods for basic

operations (such as put, get, remove, containsKey, containsValue, size,

and empty), bulk operations (such as putAll and clear), and collection views (such

as keySet, entrySet, and values).

The Java platform contains three general-purpose Map implementations: HashMap,

TreeMap, and LinkedHashMap. Their behavior and performance are precisely

analogous to HashSet, TreeSet, and LinkedHashSet.

Description
In this assignment, you will use two implementations of Map interface (included in

java), one that uses [balanced Red-Black] Trees, and the other, based on Hashing

(TreeMap and HashMap, respectively). You will have to test the performance of insert

and search operations with these implementations: based on put, containsKey and

containsValue methods).

Part 1 (6 points out of 9)

Name your class MapTester.

Take both of your tree implementations and compare them when used to implement a

TreeSort sorting algorithm.

You will use four Map objects: two (for Strings and for Integers) HashMap and

two TreeMap objects.

For numbers N = {10, 100, 1000, 10000, 100000, 1000000}
a) Create an array of 2N random Integer-s

Insert half of the (same) numbers into the maps (keep the other half for later), using the

same values for both keys and values, and measure how long each operation takes on

average (divide the total time by N). This number is to go in the table later.

 2

b) Create an array of 2N random String-s of 16 characters. Feel free to pick any

random string generator available online (e.g., [1]; remember to document your sources).

Insert half of the (same) strings into the maps (keep the other half for later), using the

same values for both keys and values, and measure how long each operation takes on

average (divide the total time by N). This number is to go in the table as well.

c) take the first half of the numbers and strings, search for random 1/10 of these numbers

or strings in both maps, using both containsKey and containsValue, and measure

how long each search takes, on average.

d) take the second half of the numbers and strings, search for random 1/10 of these

numbers or strings in both maps, using both containsKey and containsValue,

and measure how long each search takes, on average.

At the end, produce the following table (the timing values below are just placeholders

and do not relate to any real measurements):

N = 10 (times are per operation):

Strings Numbers

TreeMap, put 456 ms 456 ms

(when key/value present)

TreeMap, containsKey 456 ms 456 ms

TreeMap, containsValue 456 ms 456 ms

(when key/value absent)

TreeMap, containsKey 456 ms 456 ms

TreeMap, containsValue 456 ms 456 ms

HashMap, put 456 ms 456 ms

(when key/value present)

HashMap, containsKey 456 ms 456 ms

HashMap, containsValue 456 ms 456 ms

(when key/value absent)

HashMap, containsKey 456 ms 456 ms

HashMap, containsValue 456 ms 456 ms

N = 100:

 …

N = 1000:

…

<repeat for all values of N>

Save the result of your program execution in a file testrun.txt and submit it together

with your other files.

Part 2 (3 points out of 9)

The suggested length for each of your answers is about three lines. Put your answers in a

file answers.txt and submit it together with your other files

1
 https://stackoverflow.com/questions/41107/how-to-generate-a-random-alpha-numeric-string

 3

a) When using Java’s HashMap, how can one optimize the data structure’s performance

and space use?

b) Imagine a tree map implementation which uses heaps, instead of binary search trees.

How would performance of such a data structure differ from the actual implementation

you used in Part 1?

c) How are the TreeMap and TreeSet classes in Java related?

NOTES:

1. Make sure you reset the timer (or save the intermediate time before the next

measurement); i.e., make sure you measured time contains only the time to perform one

set of operations that was supposed to be timed.

2. In case the operations for larger N numbers take too long (e.g., more than 30 s) you

may reduce the number to a smaller one or eliminate it (so that you will have a range

from, say, 1 to 100000).

3. Do not use package-s in your project (put your classes in a default package). Using

packages will cost you a 20 % deduction from the assignment mark.

4. Name your classes as specified. Using incorrect names will cost you a 20 % deduction

from the assignment mark.

5. Some aspects of your code will be marked automatically (e.g., how it handles

boundary cases and error conditions). It is also imperative you test your classes. If any of

the java files that you submit do not compile, the whole submission will be given a grade

of zero, regardless of how trivial the compiler error is.

6. Your code should include Javadoc comments. Also, part of your mark will be based on

coding style.

Submission
Submit your work using the submit command. Remember that you first need to find

your workspace directory, then you need to find your project directory.
submit 2011 a3 <list of your files>

(The directory will be created soon).

You can check the usage examples by executing man submit.

Alternatively, you may use the web form at
https://webapp.eecs.yorku.ca/submit/index.php

You only need to submit 3 files (the tester, the test run, and the answers); optionally, you

may also submit a file readme.txt containing comments for the marker. Make sure

you submit Java source code files, and not the compiled classes.

 4

Late penalty is 20 % per day. Submission 5 days or more after deadline will be given a

mark of zero (0). Contact the instructor in advance if you cannot meet the deadline

explaining your circumstances.

Academic Honesty
Direct collaboration (e.g., sharing code or answers) is not allowed (plagiarism detection

software
2
 will be employed). However, you’re allowed to discuss the questions, ideas,

approaches you take, etc.

State all sources you use (online sources, books, etc.). Using textbook examples is

allowed (still needs to be cited).

2
 http://theory.stanford.edu/~aiken/moss/

